Small object detection based on GM-APD lidar data fusion

نویسندگان

چکیده

GM-APDæ¿€å ‰é›·è¾¾å ·æœ‰å•å ‰å­æŽ¢æµ‹çµæ•åº¦ï¼Œå¤§å¹ é™ä½Žäº†ç³»ç»Ÿä½“ç§¯å’ŒåŠŸè€—ï¼Œä½†å—åƒå ƒæ•°é™åˆ¶ï¼Œéš¾ä»¥èŽ·å¾—è¿œè·ç¦»å°ç›®æ ‡æ¸ æ™°è½®å»“ï¼Œç›®æ ‡æ£€æµ‹çŽ‡ä¸é«˜ã€‚é’ˆå¯¹è¯¥é—®é¢˜ï¼Œæå‡ºäº†åŸºäºŽå¼ºåº¦åƒå’Œè·ç¦»åƒå¤šçº§å¤„ç†çš„å°ç›®æ ‡æ·±åº¦å­¦ä¹ æ£€æµ‹ç®—æ³•ï¼Œå åˆ†æŒ–æŽ˜å¼ºåº¦å›¾åƒå’Œç‚¹äº‘ç‰¹å¾ä¿¡æ¯åŠç›¸äº’å ³è”æ€§ï¼Œæé«˜å°ç›®æ ‡æ£€æµ‹æ¦‚çŽ‡ã€‚é€šè¿‡æ”¹è¿›ç‰¹å¾é‡‘å­—å¡”ç½‘ç»œï¼Œå°†æ„Ÿå—é‡Žæ¨¡å—å’Œæ³¨æ„åŠ›æœºåˆ¶æ¨¡å—ä¸Žç‰¹å¾æå–ç½‘ç»œç›¸ç»“åˆï¼Œå¢žå¼ºå¼ºåº¦åƒåˆç­›ç›®æ ‡å‡†ç¡®æ€§ï¼Œåœ¨å€™é€‰åŒºåŸŸå† å°†å¼ºåº¦åƒä¸Žè·ç¦»åƒèžåˆæˆå¸¦æœ‰å¼ºåº¦ä¿¡æ¯çš„å››ç»´ç‚¹äº‘ã€‚ç„¶åŽï¼Œä½¿ç”¨åŠ¨æ€å›¾å·ç§¯ç½‘ç»œå¯¹å€™é€‰åŒºå† ç›®æ ‡è¿›è¡ŒäºŒæ¬¡æ£€æµ‹ï¼Œåˆ©ç”¨ç‚¹äº‘ä¿¡æ¯è¿›ä¸€æ­¥ç­›é€‰å€™é€‰æ¡†å† çš„ç›®æ ‡ã€‚ç»GM-APDæ¿€å ‰é›·è¾¾è¿œè·ç¦»è½¦è¾†æ•°æ®é›†æµ‹è¯•ï¼Œç½‘ç»œçš„æ£€æµ‹å‡†ç¡®çŽ‡è¾¾åˆ°98.8%ï¼Œå¯¹äºŽè½¦è¾†ç»“æž„ä¸å®Œæ•´ï¼Œè½¦è¾†å›žæ³¢å¼±ï¼ŒèƒŒæ™¯å­˜åœ¨å¼ºåå°„å ‰æ–‘ç­‰å¤æ‚åœºæ™¯æœ‰å¾ˆå¥½çš„é²æ£’æ€§ã€‚ç›¸è¾ƒäºŽSSD,YOLOv5ç­‰è¾ƒä¸ºå ˆè¿›çš„ç›®æ ‡æ£€æµ‹ç½‘ç»œï¼Œæ£€æµ‹å‡†ç¡®çŽ‡åˆ†åˆ«æå‡äº†3.1%与2.5%ï¼Œè¯¥ç®—æ³•ä¸ºæ¿€å ‰é›·è¾¾å¼±å°ç›®æ ‡æ£€æµ‹è¯†åˆ«æä¾›äº†ä¸€ç§å¯è¡Œæ€§è§£å†³æ–¹æ¡ˆã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Object Extraction and Recognition from Lidar Data Based on Fuzzy Reasoning and Information Fusion Techniques

Three dimensional object extraction and recognition (OER) from LIDAR data has been an area of major interest in photogrammetry for quite a long time. However, most of the existing methods for automatic object extraction and recognition from LIDAR data are just based on the range information and employ parametric methods and object’s vagueness behaviour is basically neglected. Thus, these method...

متن کامل

Object level HSI-LIDAR data fusion for automated detection of difficult targets.

Data fusion from disparate sensors significantly improves automated man-made target detection performance compared to that of just an individual sensor. In particular, it can solve hyperspectral imagery (HSI) detection problems pertaining to low-radiance man-made objects and objects in shadows. We present an algorithm that fuses HSI and LIDAR data for automated detection of man-made objects. LI...

متن کامل

Small Object Detection Based on Stereo Vision*

Sensing the environment around the host vehicle is an essential task of autonomous driving systems and advanced driver assistance systems. Detecting small objects on road is one of the environment sensing tasks which LIDAR has some fundamental difficulties to handle. For example, assume a typical LIDAR, Velodyne HDL-32E, installed on the top of a vehicle with 2.4 meter high. According to the sp...

متن کامل

Non-linear Multimodal Object Tracking Based on 2d Lidar Data

The contribution introduces a novel approach for tracking objects based on two-dimensional lidar data. As a central tracking engine, we employ a particle-filter-based solution which is capable of modelling non-linear dynamic processes as well as non-Gaussian noise distributions for the underlying process and sensor as well. In contrast to other lidar-based tracking approaches, no newly detected...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Guangxue jingmi gongcheng

سال: 2023

ISSN: ['1004-924X']

DOI: https://doi.org/10.37188/ope.20233103.0393